Témata

Záchranné systémy, 1. část: Nouzové úniky kosmických lodí z rampy

Nouzové situace, záchranné věžičky a únikové systémy. Co se za těmito slovy skrývá? Proč je vlastně potřeba, aby kosmické lodě byly schopné odnést posádku do bezpečí? Není to jen další výmysl NASA a byrokratů ve Washingtonu? V první části tohoto článku si zkusíme na těchto pár základních otázek odpovědět a podíváme se na historii záchranných systémů obecně a také na konkrétní testy či skutečné případy, kdy došlo kvůli záchraně posádky k úniku kosmické lodi z rampy.

Rizika na rampě

Ještě před tím, než se první lidé podívali do vesmíru, přemýšleli konstruktéři raket a lodí, jak umožnit posádce přežít různé nestandardní situace. Koneckonců, natankovaná raketa je z více než 90 % tvořená pouze palivem a okysličovadlem a váží klidně několik set tun (v případě Saturnu V to bylo až 3000 tun). A při jakémkoliv selhání se může raketa proměnit v ohnivé peklo, jak můžete vidět na příkladu požáru mezikontinentální balistické rakety R-16 v roce 1960, známém jako Nedělinova katastrofa.

Ale nebezpečí nepředstavuje jen požár. Řada kosmických lodí používá jako pohonnou směs asymetrický dimethylhydrazin (UDMH) a oxid dusičitý. Tyto látky mají ještě další nepříjemné vlastnosti – jsou toxické. A v případě jakýchkoliv problémů při startu nebo letu hrozí rozprášení těchto látek do okolí. Například na videu zachycujícím anomálii při startu rakety Proton M z roku 2013 můžete velice dobře vidět onen obří červený mrak. Předchozí video z požáru rakety R-16 s tímto souvisí také, jelikož kdo tehdy neuhořel, tak se otrávil. R-16 používala taktéž UDMH a místo oxidu dusičitého kyselinu dusičnou.

Tato paliva se i dnes používají při pilotovaných startech. Mimo jiné je v minulosti používaly rakety Titan II v programu Gemini a dodnes se spalují v motorech čínských raket CZ-2F. Toto jsou tedy rizika, která je nutno vzít v potaz při konstrukci raket určených pro vynášení lidí. Bylo proto vyvinuto veliké úsilí ve snaze o jejich minimalizaci. Dlužno dodat, že se to týká spíše západních vesmírných agentur. Trosky čínských raket dodnes běžně dopadají do obydlených oblastí.

Záchranná věžička

Až na výjimky (Vostok, Voschod, Gemini a STS) se při pilotovaných kosmických letech používá takzvaná záchranná věžička LES (Launch Escape System). S tímto konceptem přišel v roce 1958 Max Faget, konstruktér lodi Mercury a jeden z vedoucích inženýrů NASA. Jedná se v podstatě o raketu na tuhá paliva, která je ve velmi krátkém čase schopná odnést loď s posádkou do dostatečné vzdálenosti od nosné rakety. V praxi celý proces vypadá tak, že kabina s posádkou je pyrotechnicky oddělena od zbytku rakety a záchranná raketka ji odnese i s posádkou do bezpečí.  Potom se věžička oddělí, loď s posádkou vystřelí padáky a přistane.

Druhý test záchranné věžičky v rámci programu Apollo (Foto: NASA)

V případě Vostoku a Gemini měla být záchrana kosmonautů provedena pomocí katapultovacího sedadla. U Vostoků hrozilo, že nedojde v malé výšce k otevření padáku, proto měl kosmonaut dopadnout do velké ocelové sítě vedle rampy. U Voschodu (šlo o upravenou loď Vostok pro vícečlennou posádku) byla v podstatě záchrana nemožná. Katapultovací sedadlo bylo odmontováno, jinak by se totiž kosmonauti do kabiny nevešli, a ve Voschodu 1 dokonce startovali v teplákách. Prvních několik letů STS mělo rovněž namontovaná katapultovací křesla, ale potom byla odstraněna a záchrana posádky během úvodních několika desítek sekund letu byla spíše zbožným přáním. A jedná se tedy o systém, který má smysl? Byl vůbec někdy použit v praxi?

Použití záchranné věžičky LES (Launch Escape System) – celý průběh záchranné sekvence (Foto: NASA)

Záchranný systém v akci

26. září 1983 se chystala na Bajkonuru raketa Sojuz U s dvoučlennou posádkou Genadij Strekalov a Vladimír Titov. Měli na orbitální stanici Saljut 7 vystřídat čtvrtou dlouhodobou expedici ve složení Ljachov-Alexandrov. Raketa začala hořet a plameny přepálily kabeláž, takže již nebylo možné jejich prostřednictvím vyslat pokyn k záchraně kosmonautů, ač se o to kontroloři řídící start snažili. Zbývala tedy poslední možnost – spojit se se dvěma nezávislými kontrolory vzdálenými mnoho kilometrů od rampy (nebyli spolu ani v jedné místnosti). Ti současně stiskli tlačítko pro aktivaci záchranné věžičky rádiem. Celá tato komunikační epizoda trvala 20 sekund. Mezitím už byla celá raketa v plamenech.

Loď Sojuz T-10-1 byla odnesena od hořící rakety a několik sekund poté raketa na rampě explodovala. Posádka byla na 5 sekund vystavena přetížení 14–17 g, ale přežila, a loď poté přistála na padácích přibližně 4 kilometry od rampy, přičemž předtím dosáhla výšky přibližně 1 kilometru. Požár na rampě trval ještě dalších 20 hodin. Oba kosmonauti se poté ještě několikrát do vesmíru podívali při dalších misích a dokonce se svezli i raketoplánem. Jedná se dodnes o jediné použití záchranné věžičky v pilotovaných programech všech států vysílajících lidi do vesmíru.

Test úniku Dragonu z rampy

Pilotované lodě tedy musí mít možnost zachránit posádku z těchto situací.  Dnešní americké lodě Starliner a Crew Dragon nejsou již pro tento účel vybaveny věžičkou, ale mají záchranný systém zabudovaný přimo v lodi spalující oxid dusičitý a monomethylhydrazin. CST-100 Starliner společnosti Boeing je vybaven motorem RS-88 od firmy Rocketdyne, zatímco Dragon vyvinutý SpaceX disponuje osmi motory SuperDraco.

Motory SuperDraco měly původně mít dvojí využití. Primárně budou využívány jako únikový systém, který v případě nehody na rampě či během letu odnese loď s posádkou do bezpečí. Druhým využitím pak měla být možnost pomocí těchto motorů přistát na pevnině s přesností helikoptéry. Výkon motoru je dobře regulovatelný až na hodnotu 20 % maximálního tahu, což by pro přistání bylo velmi užitečné. Crew Dragon však nakonec bude přistávat klasicky pomocí padáků na mořské hladině a motory SuperDraco budou sloužit jen pro účely záchranného systému.

Aby SpaceX splnilo jednu z podmínek, kterou vytyčila NASA v rámci programu Commercial Crew, potřebovalo provést test záchranného systému Dragonu simulující situaci, kdy dojde k problému na rampě. Proto tedy 6. května 2015 byla na rampě SLC-40 postavena loď Dragon a došlo k testu záchrany z rampy. Nejednalo se však o plnohodnotný Crew Dragon, ale spíše jakýsi hybrid mezi klasickým nákladním Dragonem a Crew Dragonem pro posádku.

Motory SuperDraco dosáhnou plného výkonu pouhých 100 milisekund po zažehnutí a tak už za 1,2 sekundy měl Dragon rychlost 160 km/h, přičemž maximální dosažená rychlost při tomto testu se vyšplhala na 555 km/h. Po necelých dvou minutách Dragon přistál v oceánu na padácích. Jeden z motorů měl při testu špatný poměr paliva a dával nižší výkon, ale i přes tento drobný problém byl test úspěšný. Zde stojí za to zmínit upravené video, kde je do záznamu vybuchujícho Falconu na rampě při nehodě Amosu-6 přidáno video z tohoto testu záchranného systému. A je na něm vidět, že i v tomto případě by systém lodi Crew Dragon dokázal astronauty zachránit. To potvrdili také Elon Musk a Hans Koenigsmann ze SpaceX.

DragonFly na rampě SLC-40 před testem únikového systému v květnu 2015 (Zdroj: SpaceX)
DragonFly při testu únikového systému v květnu 2015 (Zdroj: SpaceX)
DragonFly při testu únikového systému v květnu 2015 (Zdroj: SpaceX)
DragonFly při testu únikového systému v květnu 2015 (Zdroj: SpaceX)
DragonFly po přistání do moře během testu úniku z rampy v roce 2015 (Foto: SpaceX)

Tolik ke kritickým situacím, které nastávají na startovní rampě. V příštích částech tohoto článku se podíváme na situace, kdy dochází k záchraně lodi během letu rakety. Kromě již proběhlých testů a skutečných nouzových úniků lodí během ostrých misí se podíváme také na plánované zkoušky lodí Crew Dragon a Orion.

Následující část >
Sdílet

Aktuální články

Nové kontrakty SpaceX: Mobilní družice pro Apple, sdílená GTO mise a orbitální tahač od Impulse Space

Další přehled nových zakázek SpaceX začneme vyjasněním situace kolem vynášení družic BlueBird společnosti AST SpaceMobile.…

22. 11. 2024

Noland Arbaugh bude 72 hodin vzhůru, aby předvedl nepřetržité používání svého implantátu od Neuralinku

Noland Arbaugh, první uživatel rozhraní Neuralinku, chystá na tento víkend trochu bláznivou výzvu – chce…

21. 11. 2024

Lex Fridman: Neuralink a budoucnost lidstva, 3. část – Matt MacDougall

Rozhovor s neurochirurgem Mattem MacDougallem nabízí fascinující pohled do zákulisí inovativní technologie mozkových implantátů. MacDougall…

18. 11. 2024

Novinky o Starlinku: Snímek družice na orbitě, spolehlivost přenosu při letu Starship, továrna v Texasu a další

V přehledu novinek o síti Starlink se nejprve podíváme, jak satelitní konstelace na nízké oběžné…

17. 11. 2024

NASA v roce 2014 málem neudělila SpaceX kontrakt na vývoj lodě Crew Dragon, preferovala osvědčený Boeing

Nová kniha Reentry od Erica Bergera se zaměřuje na vývoj Falconu 9 a kosmické lodi…

12. 11. 2024

Představení přenosné antény Starlink Mini, která je vhodná pro připojení k Internetu na cestách

Dnešní článek vám představí novou anténu určenou pro příjem signálu družic Starlink. Na rozdíl od…

10. 11. 2024